Damon Runyon News

October 28, 2021
Event

Damon Runyon was thrilled to hold its Annual Breakfast in person at Cipriani 42nd Street in New York on October 20. The event raised over $1 million to support promising early-career scientists pursuing innovative strategies to prevent, diagnose, and treat all forms of cancer.


October 28, 2021
New Discovery

Myeloproliferative neoplasms (MPNs) are cancers that arise when a mutated blood stem cell begins to produce too many red blood cells, white blood cells, or platelets. A number of mutations can drive MPNs, and studies have demonstrated that different mutations result in different clinical outcomes. For example, between the two most commonly mutated genes, JAK2 and CALRJAK2-mutated MPNs tend to be the more aggressive cancers.


October 21, 2021
Latest News

It is with great sadness that we share the news that one of our longtime Board Members, David M. Livingston, MD, passed away unexpectedly on Sunday, October 17.


October 5, 2021
Awards and Honors

Damon Runyon is delighted to announce that the 2021 Nobel Prize in Physiology or Medicine has been awarded jointly to David Julius, PhD, and Ardem Patapoutian, PhD, "for their discoveries of receptors for temperature and touch." 


September 28, 2021
New Discovery

As cancer cells evolve in response to treatment or other environmental pressures, a patient may end up with a highly diverse population of cancer cells circulating throughout their body. In these cases, a single biopsy from the tissue where the cancer originated is not enough to fully understand the cancer’s genome or how best to target it. Liquid biopsies are thus increasingly used to study circulating tumor cells (CTCs) in the blood, with single-cell CTC sequencing emerging as the next step in unraveling the mysteries of disease progression and treatment response.


September 28, 2021
New Discovery

Sometimes, while investigating one question, scientists learn the answer to an entirely different one. Some of the most significant medical breakthroughs have begun with open-ended curiosity: insulin, for example, was discovered after two German doctors removed a dog’s pancreas in 1890 to better understand its role in digestion.

September 8, 2021
New Discovery

Because cancer cells proliferate at a higher rate than normal cells, they require more energy than normal cells, and thus need to rewire the cell’s energy-producing processes to meet this excessive demand. Think of spoiled Veruca Salt in Charlie and the Chocolate Factory rerouting the chocolate bar supply directly to her father’s factory, where his workers unwrapped them faster than any normal child could, expediting her discovery of a Golden Ticket.

August 27, 2021
New Discovery

One way to determine how successfully a patient’s cancer treatment has eradicated the disease is to check the bloodstream for free-floating DNA originating from tumor cells, also known as circulating tumor DNA (ctDNA). The detection of ctDNA can serve as a powerful prognostic tool, allowing clinicians to assess the effectiveness of treatment and predict the likelihood of disease recurrence.


August 26, 2021
New Discovery

Pancreatic cancer, which will affect an estimated 60,430 Americans this year, is notoriously hard to treat. Chemotherapy and immunotherapy drugs sometimes work at first, but often the tumors develop resistance and continue to grow. This makes it one of the most lethal types of cancer, with the average five-year survival rate after diagnosis hovering around 10%.

August 23, 2021
New Discovery

A range of genetic disturbances can result in the same type of cancer, the way an off-tasting dish might result from any number of bad ingredients or missteps in the preparation process. Often, variation in clinical features—tumor appearance, location, behavior—is what defines cancer subtypes, while the genetic origins of each subtype remain unclear. But to make sense of this variation, and thus refine diagnosis and develop more precise treatments, researchers must trace these clinical features back to their genetic origins.

  • Support the next generation of researchers.