2013 New Discoveries and Honors in Cancer Research

2013 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2014 New Discoveries and Honors in Cancer Research

2014 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2012 New Discoveries and Honors in Cancer Research

2012 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2011 New Discoveries and Honors in Cancer Research

2011 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2010 New Discoveries and Honors in Cancer Research

2010 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2009 New Discoveries and Honors in Cancer Research

2009 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2005 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2006 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2007 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

2008 New Discoveries and Honors in Cancer Research

2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005

Members of the Damon Runyon scientific circle regularly publish findings on the latest cancer research and are frequently recognized for their contributions to the fight against cancer.  Below, you will find new discoveries in cancer research and the most recent honors bestowed upon Damon Runyon Cancer Research Foundation awardees, alumni and friends.

October 14, 2014 > 2014 NYSCF-Robertson Stem Cell Investigators named

Feng Zhang, PhD (Damon Runyon-Rachleff Innovator '12-'14) of the Broad Institute and Massachusetts Institute of Technology, Cambridge, is one of six promising early career scientists named as 2014 NYSCF-Robertson Stem Cell Investigators. The award is designed to support scientists engaged in novel neuroscience and cutting-edge translational stem cell research. Each Investigator will receive a generous five-year award.

Click here for more.

September 25, 2014 > New mouse model for genome editing and cancer modeling

Sidi Chen, PhD (Damon Runyon Fellow '12-'15) and Feng Zhang, PhD (Damon Runyon-Rachleff Innovator '12-'14) of the Broad Institute and Massachusetts Institute of Technology, Cambridge, developed a new mouse model that allows scientists to use the CRISPR-Cas9 system for in vivo genome editing experiments. They demonstrated the utility of the new “Cas9 mouse” model to edit multiple genes in a variety of cell types, and to model lung adenocarcinoma. The mouse has already been made available to the entire scientific community. These findings were published in the journal Cell.

Click here for more.

September 24, 2014 > Recruiting anthrax for drug delivery

Bradley L. Pentelute, PhD (Damon Runyon-Rachleff Innovator ’13-’15), and colleagues at Massachusetts Institute of Technology, Cambridge, used a disarmed version of the anthrax toxin to deliver two proteins known as antibody mimics, which can kill cancer cells by disrupting specific proteins inside the cells. In this study, they successfully targeted Bcr-Abl and hRaf-1, which both have known functions in cancer. This is the first demonstration of effective delivery of antibody mimics into cells, which could be applied to develop new drugs for cancer and other diseases. These findings were published in the journal ChemBioChem.

Click here for more.

September 8, 2014 > Splicing factor important for cancer development and metastasis

Zefeng Wang (Damon Runyon Fellow ’03-’06) of UNC School of Medicine, Chapel Hill, discovered that a protein crucial to the process of gene splicing, called RBM4, is drastically decreased in multiple forms of human cancer, including lung and breast cancers. This reduction in RBM4 results in altered gene expression, giving rise to cancer development and metastasis. Components of the splicing pathway could be potential targets for new cancer therapies. The study was published in the journal Cancer Cell.

Click here for more.

September 3, 2014 > Handheld scanner for accurate detection and removal of brain tumor cells

Moritz F. Kircher, MD, PhD (Damon Runyon-Rachleff Innovator '14-'16) and colleagues at Memorial Sloan Kettering Cancer Center, New York, developed a new handheld device (“Raman scanner”) that can accurately detect cancer cells during surgery. The device resembles a laser pointer and detects nanoprobes that mark tumor cells but not normal cells. In a mouse model of glioblastoma, the scanner enabled researchers to successfully identify and remove all malignant cells in the animals’ brains. The device has the potential to move rapidly into clinical trials, eventually allowing surgeons to remove all cancer cells while sparing healthy tissue. This study was published in the journal ACS Nano.

Click here for more.

August 19, 2014 > 2014 Technology Review’s “35 Innovators under 35”

Emily P. Balskus, PhD (Damon Runyon-Rachleff Innovator '14-'16) of Harvard University, Cambridge, has been named to MIT Technology Review's list of "35 Innovators under 35" for her research focused on how gut bacteria use chemical reactions to survive. The list is comprised of "exceptionally talented technologists whose work has great potential to transform the world."

Click here for more.

August 17, 2014 > Imaging how tumor cells transition to invasion

Ian Y. Wong, PhD (Damon Runyon Fellow '10-'13) of Brown University, Providence, and colleagues, developed a microchip that enabled cancer cells to be imaged as they migrated across a surface that mimics the tissue surrounding a tumor. They examined cells that had undergone epithelial-mesenchymal transition (EMT), a process in which epithelial cells that stick together within a tissue, change into mesenchymal cells that can disperse and migrate individually. EMT is thought to play a role in cancer metastasis, allowing cancer cells to escape from tumor masses and colonize distant organs. This new imaging technology allows researchers to precisely measure how these cells move. Ultimately, they hope the device can be used for preliminary testing of drugs aimed at inhibiting cancer metastasis. This study was published in the journal Nature Materials.

Click here for more.

Improving and Expanding Our Programs

AUGUST 2014

The Damon Runyon Cancer Research Foundation is committed to identifying and supporting exceptional early career researchers to accelerate progress against cancer. We pride ourselves on being an agile organization, able to rapidly target funding to where it can be most effective.

A recent assessment of our programs conducted by leading experts in the field of cancer research allowed us to ask if we could make a greater difference in finding cures for cancer faster. Based on the results of this rigorous review, we will be increasing our support for the nation’s best cancer researchers by 33%.

In a time of declining federal funding of research, we are stepping up to protect and encourage innovative cancer research in three major ways.


Strengthening the Damon Runyon Fellowship Award

The Damon Runyon Fellowship Award supports the training of the brightest postdoctoral scientists as they embark upon their independent research careers. Postdoctoral funding allows promising scientists time to establish their own research in the labs of senior scientists, who provide vital guidance and scientific expertise.

Typical postdoctoral fellowships offer three years of funding, but most postdoctoral work requires four or more years to complete. So that our Fellows have the support they need to pursue groundbreaking research and build their careers on the cutting edge of cancer research, we are adding a fourth year to the Damon Runyon Fellowship Award. We are the first major organization to add a fourth year to our Fellowship Award.

"I am thrilled. [The award] means I can simply focus 100% on science for my postdoc training period. My mentor and I appreciate the generous support from the Foundation and hope that our project can lead to significant breakthroughs in cancer research to repay the trust of the foundation and the donors.
- Chao Lu, PhD, Kandarian Family Fellow

At a time when the entire funding universe is stepping back, [Damon Runyon is] moving forward." – Leo D. Wang, MD, PhD, Damon Runyon-Sohn Fellow

Read more about the Damon Runyon Fellowship Award

Training More Physicians as Researchers

Physician-scientists are the critical link between scientific discoveries and cures because they understand cancer in patients as well as in the lab. While our Clinical Investigator Award provides established physician-scientists with the support to pursue patient-oriented research, fewer physicians are choosing research careers in the first place.

To reverse this trend and ensure that discoveries from the lab are quickly used to help patients, we are launching a new Physician-Scientist Training Award to recruit top medical school graduates to pursue cancer research careers by offering intensive training and mentorship.

The pilot class of this program will be launched in 2015.

Read more about the Physician-Scientist Training Award


Supporting Daring Ideas

The Damon Runyon-Rachleff Innovation Award encourages our scientists to explore new ideas that, if successful, could revolutionize cancer prevention, diagnosis or treatment. The Innovation Award is specifically designed to provide funding to extraordinary early career researchers who have an innovative new idea but lack sufficient preliminary data to obtain traditional funding. It is not designed to fund incremental advances.

To make certain we are supporting projects with strong potential for high impact in the cancer field, the selection committee will assess each project after two years to see if the idea continues to show great promise. If so, we will extend funding for an additional two years. This will enable us to focus our investments on the projects with the highest potential for radically transforming cancer care.

Read more about the Damon Runyon-Rachleff Innovation Award


All together, we will be increasing our investment in innovative cancer research by 33% over the next 12 months.

These changes demonstrate our belief that continual assessment and expansion of our programs will ensure that the most brilliant scientists remain committed to groundbreaking cancer research.

August 1, 2014 > 2014 William B. Coley Award for Distinguished Research in Tumor Immunology

Gordon J. Freeman, PhD (Damon Runyon Fellow '79-'81), of Harvard Medical School and Dana-Farber Cancer Institute, Boston, was named one of four recipients of the 2014 William B. Coley Award for Distinguished Research in Tumor Immunology.  He is recognized for his contributions to the discovery of the programmed cell death-1 (PD-1) receptor pathway, a new immune system checkpoint that has been shown in clinical studies to be a highly promising target in cancer immunotherapy.  PD-1 inhibitor drugs are effective in treating several types of deadly cancer, including melanoma, non-small cell lung cancer, head and neck cancer, bladder cancer, and kidney cancer.

Click here for more.

 1 2 3 >  Last »