Ovarian, Uterine, and Cervical Cancers

Current Projects
Nora Kory, PhD

Cancer cells rely on efficient uptake, conversion, and exchange of nutrients and vitamins to support their rapid growth and survival. The molecular transport channels that allow passage of nutrients between the different cellular compartments are critical for the survival of cancer cells and are thus promising as potential drug targets. However, drug discovery efforts are hampered by a lack of basic understanding of these channels' identities, functions, and regulation inside cancer cells. Dr. Kory's research aims to identify transporters central to cancer cell nutrient supply and detoxification pathways and determine their role in the emergence, survival, and aggressiveness of cancer. Her research is relevant to all cancers, but particularly pediatric, blood, and breast cancers.

Project title: "Targeting mitochondrial transporters in cancer"
Institution: Harvard T.H. Chan School of Public Health
Award Program: Innovator
Cancer Type: Blood, Gynecological, All Cancers
Research Area: Biochemistry
Jeremy A. Owen, PhD

Chromatin remodelers are complex protein machines responsible for packaging DNA and regulating gene expression. Their dysfunction is strongly implicated in cancer. For example, certain types of sarcoma and ovarian cancer are driven by mutations in a chromatin remodeler called BAF. Combining experiments with theoretical work, Dr. Owen’s research aims to understand how remodelers recognize their target sites in the cell’s nucleus. By expanding our understanding of chromatin remodeling, the findings of this research will provide the groundwork for more effective cancer treatments—suggesting how drugs might target chromatin remodelers—as well as enhance our understanding of how existing drugs that target remodeler-adjacent mechanisms might work.

A central aim of this project is the development of new, quantitative models to explain the behavior of chromatin remodelers seen in experiments. Dr. Owen will achieve this by successive rounds of passing between theory and experiments repeatedly—measuring, modeling, then measuring again. For comparison to experiments, model predictions will be extracted computationally (e.g., numerically solving ODEs, or by exact stochastic simulation using Gillespie’s algorithm) or analytically (e.g., by the King-Altman procedure, and variants), as appropriate.

Project title: "The biophysics of substrate recognition in chromatin remodeling"
Institution: Princeton University
Award Program: Quantitative Biology Fellow
Sponsor(s) / Mentor(s): Tom W. Muir, PhD, and Ned S. Wingreen, PhD
Cancer Type: Gynecological, Sarcoma, All Cancers
Research Area: Chromatin Biology
  • You can support our innovative researchers.