Many prostate cancers initially respond to treatments that block the hormone testosterone, thus halting tumor growth. These treatments block testosterone by targeting a molecule called the androgen receptor (AR). However, patients often develop resistance to these drugs, giving rise to an aggressive AR-independent form of prostate cancer. Often under-recognized, AR-negative neuroendocrine prostate cancer (NEPC) currently represents approximately 25% of advanced prostate cancers. The clinical diagnosis is most often made when the cancer has metastasized, especially to liver and brain, and is associated with a low prostate specific antigen (PSA) level. The poor prognosis of NEPC is, in part, due to an incomplete understanding of the molecular events underlying its development.
By utilizing valuable tissue resources and state-of-the-art technologies, Dr. Beltran [Damon Runyon-Gordon Family Clinical Investigator] seeks to comprehensively evaluate NEPC tumors for recurrent molecular alterations and determine their functional and clinical impact. She will identify a genomic profile that distinguishes NEPC from the more common type of prostate cancer, prostate adenocarcinoma, and evaluate the impact of NEPC-associated alterations on patient outcomes and their ability to predict patient response to available therapies. Her goal is to improve our understanding of molecular events associated with disease progression and help develop strategies toward preventing NEPC. Distinguishing NEPC will help identify prostate cancer patients unlikely to benefit from additional AR-targeted strategies and select patients for novel targeted treatment approaches for NEPC.