Daniel H. Lin, PhD

Dr. Lin is studying how the three-dimensional organization of messenger RNAs affects protein synthesis and how this mode of control is affected in cancer. Dr. Lin is developing high-throughput sequencing technologies to measure the three-dimensional organization and protein production of messenger RNAs to decipher the rules governing the relationship between these two properties and how they change in cancer.

Benjamin R. Sabari, PhD

Dr. Sabari studies how the three-dimensional architecture of the genome plays a critical role in gene control and is altered in cancer through non-coding mutations. While many well-defined protein-coding mutations have been identified in T cell acute lymphoblastic leukemia (T-ALL), ongoing whole-genome sequencing efforts of patient T-ALL samples are revealing an unexpected level of non-coding mutations within regulatory elements critical for genome architecture. Dr.

Laura Blanton, PhD

Dr. Blanton is focusing on the contributions of the X and Y chromosomes to immune cell gene expression and function. Since the immune system plays a crucial role in tumor biology and cancer treatment, this work will help illuminate differences between cancer susceptibility, progression, and treatments in men and women.

Nora Kory, PhD

Dr. Kory focuses on cancer cell metabolism. Cancer cells are characterized by rapid and uncontrolled cell growth. To sustain their accelerated growth, cancer cells rely on a constant supply of building blocks produced by specific metabolic pathways. One metabolic pathway, the mitochondrial one-carbon pathway, has recently been found to be especially important for the growth and survival of tumors and correlates with the survival of cancer patients.

Wenwen Fang, PhD

Dr. Fang [HHMI Fellow] aims to understand the mechanism and regulation of microRNA biogenesis. MicroRNAs function to regulate gene expression and their disruption contributes to the initiation and progression of cancer. She will combine high-throughput sequencing techniques and biochemistry to examine the recognition and processing of microRNA precursors, which may ultimately contribute to more effective cancer diagnosis and therapy. 

Xiaoxiao Shawn Liu, PhD

Dr. Liu will utilize a novel technology based on CRISPR to study the effect of an epigenetic chemical modification called 5-hmC on gene expression. He will analyze the effect at a single genome level and then define the role of 5-hmC in normal mammalian development and in cancer.