Damon Runyon News

May 3, 2017

C. Ryan Miller, MD, PhD (Damon Runyon Clinical Investigator ’09-’12) of the UNC Lineberger Comprehensive Cancer Center, Chapel Hill, and colleagues, reported two studies on the genetics underlying brain tumors. The first study showed that mutations in MAPK and PI3K affect how cancer starts in glial cells, brain cells that provide support and insulation for neurons. These mutations triggered tumor initiation and produced increasingly dense low-grade gliomas that quickly progressed to aggressive and often deadly glioblastoma (GBM).

May 2, 2017

Election to the National Academy of Sciences is one of the highest honors that can be earned by a U.S. scientist.  In recognition of their distinguished and continuing achievements in biomedical research, members of the Damon Runyon community of scientists were inducted this month:  


Ardem Patapoutian, PhD (Damon Runyon Scholar ’03-‘05, Fellow ’96-‘99), Scripps Research Institute, La Jolla


Guillermina Lozano, PhD (Former Fellowship Award Committee Member), M.D. Anderson Cancer Center, Houston


May 1, 2017

May is National Cancer Research Month and we are ‘Celebrating Scientists’ who are working to cure, treat and prevent this deadly disease. Throughout the month we will introduce you to some of the brilliant Damon Runyon scientists who are pursuing innovative cancer research.


April 26, 2017

The following Op Ed by Ralph J. DeBerardinis, MD, PhD, a Damon Runyon Clinical Investigator, appeared in the Philadelphia Inquirer on April 14, 2017


THE WHITE HOUSE recently proposed slashing support to the National Institutes of Health, the federal agency funding thousands of health-related research projects in the United States. I direct a clinic and research laboratory developing cures for cancer and childhood genetic diseases. My lab runs on NIH funds, and I'm writing to outline why these cuts will be disastrous for our long-term prospects for health.


April 21, 2017

By Peter J. Turnbaugh, Damon-Runyon Innovator


For our 70th Anniversary Annual Report, we recently asked some of our current award recipients how cancer will be prevented, diagnosed, and/or treated differently in the future. What can a future cancer patient, say 10-20 years from now, expect to experience? Their responses were fascinating, and over the next few months we will share their visions for the future on this blog.


Cancer is notoriously hard to treat due to the severity of side effects and the high rate of relapse. While one patient may show a miraculous recovery, the next may show very little response or have an adverse drug outcome. Polymorphisms in the human genome are important, but they can fail to explain most of the observed variation in treatment outcomes. Far less attention has been paid to our “second genome”, the microbiome—comprising the trillions of microbes that thrive in and on the human body.


April 13, 2017

Feng Zhang, PhD (Damon Runyon-Rachleff Innovator ’12-’14) and colleagues at the Broad Institute, Cambridge, have developed a new CRISPR-based genetic diagnostic tool that may make it faster, less expensive, and easier to diagnose acute and chronic diseases like Zika, Ebola, cancer, and other hereditary disorders. The new tool dubbed SHERLOCK (Specific High-sensitivity Enzymatic Reporter unLOCKing) can detect extremely low concentrations of Zika virus and cancer DNA in blood, urine, and saliva samples.

April 11, 2017

Shruti Naik, PhD, Damon Runyon Fellow, Rockefeller University 


I was recently asked by Lorraine Egan to serve on a panel for women in STEM at her daughter’s school. The girls’ enthusiasm and curiosity for science was unmistakable. “How do you design an experiment?”, “What do you like about research?”, “How do you identify mentors?”. Their ardent inquiries were nothing but reassuring. I thought, “If these girls represent the future, then the future of women in science is secure!” Enjoying this blissful moment I walked back to my research institute and was promptly jolted back to reality.


April 10, 2017

Jedd D. Wolchok, MD, PhD (Damon Runyon-Lilly Clinical Investigator ‘03-‘08) at Memorial Sloan Kettering Cancer Center, New York, and colleagues, reported that matching the size of a tumor to the body's immune response could help doctors tailor immunotherapy treatments for melanoma patients whose disease has spread.

April 7, 2017

Supporters of the Damon Runyon Cancer Research Foundation have been steadfast in their support of our work to identify and enable new generations of the most promising young scientists across the nation so that cancer research will continue to have an influx of brilliant and creative researchers with fresh ideas who are capable of making the next breakthrough against this devastating disease.


This pipeline of new talent is increasingly at risk, all the more so given the new administration’s proposal to cut the National Institutes of Health's budget for next year by 20 percent, and more recently by suggesting an immediate $1.2 billion cut.


March 29, 2017

By Michael W. Drazer, MD, Damon Runyon Physician Scientist at the University of Chicago


Physician-scientists are uniquely positioned to identify the next generation of scientific breakthroughs and then efficiently translate these discoveries into clinically effective, life-changing therapies for people with cancer. This unique set of opportunities, however, is accompanied by a distinct set of obstacles that confront early career physician-scientists in the scientific and clinical realms. These challenges include financial debt from years of professional training, a lack of protected time for the development of scientifically sound, ambitious research programs, low salaries during years of extended training, and an increasingly unstable and unpredictable funding environment for biomedical research at the national level.