New Discoveries and Honors

Read about the latest discoveries by Damon Runyon scientists and honors received by scientists in the Damon Runyon scientific community.

June 18, 2021

The American Society of Clinical Oncologists hosted their annual meeting this past weekend (June 4th-8th, 2021), giving oncology professionals from around the globe the chance to present cutting-edge research on new cancer therapies, ongoing clinical trials, and standards of patient care. Among the studies presented were those of several former and current Damon Runyon Clinical Investigators, whose research unites lab inquiry with clinical application.


June 4, 2021

One of the many ways tumor cells evade capture by the immune system is by presenting proteins on their surface that signal “don’t touch me” to immune T-cells. These proteins are called immune checkpoints. Therapies that block them—known as immune checkpoint blockades (ICB)—are remarkably effective, but they only work for a minority of cancer patients. In search of more widely beneficial immunotherapies, Damon Runyon Physician-Scientist Gabriel Griffin, MD, and colleagues at the Broad Institute of MIT and Harvard are investigating other mechanisms of immune system evasion to target in combination with ICB. Specifically, they have set out to find epigenetic regulators—proteins that turn genes “on” and “off”—that play a role in helping cancer cells avoid detection.


June 2, 2021

Prostate cancer (PCa), second only to skin cancer in prevalence among American men, has multiple subtypes defined by which key gene was mutated early in disease progression. Molecular analysis of PCa tumors has illuminated these subtype-defining genetic events, yet it remains unclear how these early alterations influence later genetic events and, eventually, result in different clinical outcomes. While molecular characterization often guides treatment decisions in breast and other cancers, more clarity is needed about these pathways for PCa subtyping to be clinically relevant. At Weill Cornell Medicine, Damon Runyon Clinical Investigator Chris Barbieri, MD, PhD, and colleagues are leading this charge.


May 10, 2021

While some cancers are known to be caused by mutations in key genes, genetic mutation does not always tell the full story. Epigenetic changes—which do not affect the DNA sequence itself, but rather the degree to which a gene is expressed—can play an important role in cancer as well. Such is the case with acute lymphoblastic leukemia (ALL), the most common form of cancer in children, which has a low incidence of genetic mutation but often coincides with abnormal epigenetic behavior.

May 5, 2021

There are two types of genes that, if mutated, can lead to cancer. One set of genes directs cell growth – a mutation in one of these genes can cause cells to grow uncontrollably, like a gas pedal stuck to the car floor. The other set of genes function as the “brakes,” telling cells when to slow down, correct replication mistakes, or undergo apoptosis (programmed cell death). These are called tumor suppressor genes, and as the name implies, a disruption in their function can allow the growth of tumors.

May 3, 2021

Established by an Act of Congress in 1863, the National Academy of Sciences (NAS) is the body of distinguished researchers “charged with providing independent, objective advice to the nation on matters related to science and technology.” Election to membership is among the highest honors a scientist can receive. This year, three Damon Runyon alumni join the NAS ranks, bringing the total number of Damon Runyon alumni in NAS to 89.


April 28, 2021

By the time patients experience symptoms, their tumors contain a genetically diverse collection of cancer cells, each with an accumulation of mutations. If we could better understand the sequence of events that leads from a single mutation to a heterogeneous population of tumor cells, earlier detection and intervention might be possible. However, attempts to trace this evolution where it has already occurred (in model organisms, immortalized cell lines, or patient samples) face significant challenges.


April 23, 2021

The KRAS gene, responsible for encoding a protein that serves as an “on/off” switch for cell growth, is one of the most commonly mutated genes in cancer. The frequency and nature of its mutation differ across cancer types, however, with the highest occurrence of mutation found in cancers of the colorectum, pancreas, lung, and blood plasma.


April 5, 2021

The tumor, once an indistinct mass of heterogeneous cells, is gaining single-cell resolution. Until recently, even distinguishing between healthy cells and malignant cells within a tumor sample presented a challenge.


March 11, 2021

Nearly all human cancers, and particularly blood cancers, involve dysregulated gene expression – the wrong genes are switched on or the right ones are switched off. The molecule responsible for switching genes on and off is called a transcription factor. Identifying which transcription factor is misbehaving and how is often the key to developing effective cancer treatments.


February 22, 2021

A new study demonstrates the staying power of the immune response generated by a personalized cancer vaccine called NeoVax, which works by targeting specific proteins on each patient’s tumor cells to activate the body's immune system against the cancer.


January 28, 2021

Pancreatic cancer is one of the most difficult forms of cancer to treat effectively. Standard courses of chemotherapy drugs often come up short for patients, leading to a dismal 5-year relative survival rate of just 10%. And while the past few years’ transformative breakthroughs in immunotherapy have drastically improved the prognosis for many patients diagnosed with other forms of cancer, most pancreatic cancers have proved frustratingly resistant to immunotherapy alone.


January 19, 2021


This year, thirteen Damon Runyon alumni were chosen as American Association for the Advancement of Science (AAAS) Fellows in honor of their invaluable contributions to science and technology. 


  • You can support our innovative researchers.