Promising new treatments for cancers of the bladder and kidney have been developed, but, as with many cancer therapies, tumors eventually develop resistance. Research has shown that cancer cells resist treatment in part via epigenetic changes—those that do not affect the DNA sequence itself but turn important genes on or off, allowing cancers to survive under therapeutic stress. Dr. Baca is using novel techniques to study the epigenomes of cancer cells from blood samples. His goal is to understand how changes in the epigenomes of bladder and kidney cancers lead to treatment resistance. This knowledge will enable the design of better treatments and drug combinations that will benefit patients with metastatic bladder or kidney cancers.
Other Cancers
Current Projects

Abnormal interactions between our immune system and our gut microbes can lead to inflammation that drives colon and gastric cancer growth. Dr. Brian [HHMI Fellow] is investigating how the immune system recognizes and responds to these microbes, and how these interactions contribute to abnormal inflammation that can fuel cancer growth. Microbiota-immune interactions have been generally studied in the context of "clean" laboratory mice, but these models do not fully capture human immunology and the complex interplay between host cells and foreign microbes. To overcome this, Dr. Brian plans to study these interactions in "dirty" mice, colonized by a diverse community of microbes as well as pathogens. He will then use laboratory mice with more defined microbial communities to test how recognition of specific microbes by the immune system is regulated and how disruptions to this regulation contributes to inflammation. Dr. Brian received his PhD from the University of Minnesota, Twin Cities and his BS from the University of California, Santa Barbara.

Hepatocellular carcinoma (HCC) is the most common liver cancer and has one of the highest cancer-related mortality rates. Conventional cancer immunotherapies, which largely focus on enhancing T cell activity, are unfortunately effective in only a small minority of HCC patients. Though dendritic cells (DCs) are essential for T cell activation, their potential as an immunotherapeutic target remains poorly understood. Dr. Cao [Bakewell Foundation Fellow] is investigating how a unique, hyperactivated state of DCs can be harnessed to enhance anti-tumor immunity in a genetically engineered mouse model of HCC. Her work aims to uncover how hyperactivated DC responses generate stronger and longer-lasting protection against HCC and hopefully other cancers that are poorly responsive to conventional therapies. Dr. Cao received her MD, PhD from Albert Einstein College of Medicine, Bronx and her BS from Cornell University, Ithaca.

Nearly all of the FDA-approved therapies in the last decade for bladder cancer target cell surface proteins. Despite enormous progress in targeted therapy development, however, only five unique targets (out of thousands) have been explored. In addition, because current tumor targets are often also expressed on normal tissues, toxic side effects are common and can even be life-threatening. Therefore, identifying cancer-specific, targetable proteins is critical to enhancing efficacy and safety of bladder cancer drugs. In this project, Dr. Chou will utilize a new technique to identify novel drug targets from patient tumor samples, develop molecules that bind them, and engineer these molecules into cellular therapies. He will also evaluate a strategy to target a surface protein called CDCP1 and explore the role of several proteases (enzymes that break down proteins) in therapy resistance. Dr. Chou hopes that his work will reveal a new class of targetable surface proteins for bladder cancer and pave the way for future clinical trials.

Proteins found on the surface of cells are key agents in cancer progression, as they play a role in cell signaling and metastasis. Targeted protein degradation has emerged as a therapeutic strategy to modulate what are considered “undruggable” proteins. Specifically, lysosomal-targeting protein degradation (LTPD), which uses the cancer cell’s own degradation machinery to break down proteins, has demonstrated therapeutic potential. However, the proteins targeted for LTPD have been limited to a few well-studied membrane and extracellular proteins, leaving much still unknown about the breadth of proteins that can be targeted for degradation and the features of a target protein that determine LTPD efficacy. Dr. Floyd [HHMI Fellow] aims to systematically characterize the features of cell surface proteins that drive the efficacy of LTPD with the goal of identifying new targets for blood cancer treatment. Dr. Floyd received his PhD from University of Texas at Austin, Austin and his BS from California Polytechnic State University, San Luis Obispo.

Drug therapies that selectively target proteins that drive the growth of tumor cells are rapidly becoming the standard of care for many cancers. However, tumors are often able to evade inhibition by targeted anti-cancer drugs by activating other proteins, leading to drug resistance. Dr. Gier [HHMI Fellow] is developing a new therapeutic approach that repurposes existing drugs to release highly toxic cargoes, known as payloads, that aggregate in drug-resistant cancer cells and kill them. As a general platform, it is applicable to a wide range of solid and liquid cancers. Dr. Gier received his PhD from University of Pennsylvania, Philadelphia and his BA from Swarthmore College, Swarthmore.

Mitochondria harbor independent genetic material known as mitochondrial DNA (mtDNA). This compact, circular molecule encodes proteins essential for the assembly of the mitochondrial electron transport chain to generate energy in form of ATP. Like nuclear DNA, mtDNA is susceptible to damage and mutations. One of the most common disease-causing aberrations of mtDNA is termed “common deletion.” This aberration disrupts mitochondrial function, resulting in neuromuscular diseases and potentially certain cancers, including colorectal cancer. Due to a lack of tools to modify the mitochondrial genome, researchers currently do not understand the mechanisms behind common deletion. Dr. Kavlashvili [Timmerman Traverse Fellow] aims to investigate by using cutting-edge molecular biology tools to edit and visualize mtDNA genomes. She will then be poised to unravel impacts of this deletion on various tissues, in order to ultimately mitigate its pathological impact. Dr. Kavlashvili received her PhD from Vanderbilt University, Nashville and her BS from University of Iowa, Iowa City.

Hepatocellular carcinoma (HCC), a type of liver cancer often caused by liver disease related to viral infections or metabolic disease, is a leading cause of cancer deaths globally. Treating HCC with immunotherapy and targeted therapies shows promise, but liver damage can make these treatments challenging to administer and less effective. Dr. Keenan’s preliminary data suggest that certain immune cells, known as myeloid cells, become suppressive in patients with HCC and worsen liver function. However, it is possible that the correct combinations of immunotherapy treatments could partially reverse this myeloid cell suppression and result in better outcomes for patients with HCC. Dr. Keenan will focus on understanding exactly how liver disease affects the immune system and finding ways to counteract the suppressive effects of myeloid cells. By studying blood samples and liver tissues from patients with HCC undergoing immunotherapy treatment, she aims to identify the best combinations to enhance the immune system’s ability to fight liver cancer. This research could lead to new, more effective treatments for patients with liver cancer, potentially improving survival rates and quality of life.

Ammonia, a waste product of cellular activity, is cleared from the body by the liver and kidneys through a process known as the urea cycle. During the urea cycle, ammonia is converted to urea, and arginine (an amino acid) is generated. When liver cells become cancerous, the urea cycle pathway stops functioning and cancer cells must import arginine from outside the cell. When cancer cells are prevented from importing arginine (via removal of arginine from the diet or genetic removal of the transporter), tumors do not grow, suggesting that arginine is critical for cells. However, the function of arginine in the cell is unclear. Using mass spectrometry and mathematical modeling, Dr. Lesner will identify the fate of arginine as it is metabolized by liver cancer cells in mouse models, and investigate how this is altered by various genetic mutations. Additionally, he will examine how restricting arginine from the diet genetically alters the liver and tumor cells. By understanding how disruption of this metabolic pathway influences liver cancer growth in the context of specific cancer drivers, Dr. Lesner aims to inform new therapeutic strategies. Dr. Lesner received his PhD from The University of Texas Southwestern Medical Center, Dallas and his BA from the University of Wooster, Wooster, Ohio.

Dr. Li’s research aims to uncover a missing link between repeated DNA sequences, genomic instability, and viruses. While abnormal expansion of “repeats” has been found at unstable genomic regions, known as fragile sites, that are implicated in cancer growth, the mechanisms and consequences of this genomic instability remain poorly understood. Dr. Li recently discovered a cluster of Epstein Barr Virus (EBV)-like repeat sequences in the genome that breaks when bound by abnormally high levels of EBV antigens. These findings illustrate how a chromosome can be broken in long-term EBV infection, which can threaten genome stability and trigger cancer development. Dr. Li aims to leverage this discovery to advance our understanding of how broken repeats threaten genome integrity for clinical screening of individuals susceptible to EBV-associated diseases, and for the prevention and treatment of disease in these individuals. This research could also lead to the discovery of other virus-like repeats and the potential biological function of these virus-like repeats in our genome.