Sarcomas

Current Projects
Allison L. Didychuk, PhD

Dr. Didychuk is investigating the mechanism by which the Kaposi’s sarcoma herpesvirus (KSHV) co-opts the cellular host machinery to produce its own gene products in a manner distinct from other viruses and host cells. This research should reveal insights into this unique mode of transcriptional control. KHSV is an oncogenic virus that causes various cancers including, Kaposi’s sarcoma, primary effusion lymphoma, and multicentric Castleman’s disease, in immunocompromised individuals.

Project title: "Viral mimics of host transcription factors in oncogenic herpesviruses"
Institution: University of California, Berkeley
Named Award: The Rhee Family Fellow
Award Program: Fellow
Sponsor(s) / Mentor(s): Britt Glaunsinger, PhD
Cancer Type: Blood, Other Cancer, Sarcoma
Research Area: Virology
Katherine E. Gadek, PhD

Dr. Gadek focuses on the Sonic Hedgehog (Shh) signaling pathway, which can be altered in rhabdomyosarcoma (RMS) patients. RMS is the most common soft-tissue sarcoma in children, but survival rates and treatments for high-risk patients have not improved in three decades. Dr. Gadek will examine the timing of tumor development and the role of Shh signaling in tumor location and formation. This may lead to diagnostic markers and tools for identifying high-risk patients with altered Sonic Hedgehog signaling, which could improve treatment options and outcomes.

Project title: "Defining endothelial progenitor cell pliancy in rhabdomyosarcoma" 
Institution: St. Jude Children's Research Hospital
Award Program: Sohn Fellow
Sponsor(s) / Mentor(s): Mark Hatley, MD, PhD, and Stacey Ogden, PhD
Cancer Type: Head and Neck Cancer, Pediatric, Sarcoma
Research Area: Developmental Biology
Lillian M. Guenther, MD

Ewing sarcoma is an aggressive bone tumor that occurs in children and young adults. Cure rates, particularly when disease has spread, are low with currently available treatments. Dr. Guenther aims to identify critical genes on which Ewing sarcoma cells are dependent for survival, with the goal of discovering weaknesses in these cancer cells that may be exploited to stop cancer growth. CITED2 is of particular interest as a Ewing sarcoma-specific dependency gene based on a genome-wide screen in hundreds of cancer cell lines. In some other cancers, CITED2 is described as important for helping cells repair damage and survive stress, such as when they are exposed to chemotherapy. She has found that CITED2 is present in higher levels in Ewing sarcoma cells than in other types of cancer, and when CITED2's function is turned off in Ewing sarcoma cells, they grow more slowly. She aims to first confirm that CITED2 is critical for Ewing sarcoma survival. She will also investigate what makes CITED2 important in cancer cells, including specific features of Ewing sarcoma cells that contribute to its high levels of activity.  Additionally, she wants to understand CITED2's function in Ewing sarcoma cells, including any role for CITED2 in the repair of damage to DNA after chemotherapy or stress. The goal of this work is to develop new directed cancer therapies for patients with this devastating disease. She hopes that these studies will have an additional impact on the treatment of other cancers where CITED2 has been shown to play a role, including acute myeloid leukemia.

Project title: "Investigation of CITED2 as a novel dependency in Ewing sarcoma"
Institution: Dana-Farber Cancer Institute
Award Program: Physician-Scientist
Sponsor(s) / Mentor(s): Kimberly Stegmaier, MD
Cancer Type: Pediatric, Sarcoma
Research Area: Cell Biology
Julia Su Zhou Li, PhD

Dr. Li focuses on how cells become cancerous when they have an abnormal number of chromosomes or broken parts of a chromosome. The centromere, which joins two arms of a chromosome, is essential for faithful chromosome segregation during cell division and genome stability. When chromosomes fail to be delivered correctly to each new cell, the abnormal chromosomes may form “neocentromeres” which have been discovered in developmental disorders and cancer. Dr. Li is developing tools to examine and manipulate these neocentromeres, which may lead to a better understanding of how cancer cells evolve and potentially novel anti-tumor strategies.

Project title: "Spatial regulation of the inheritance of genomic abnormalities in cancer cells"
Institution: Ludwig Institute for Cancer Research
Award Program: Fellow
Sponsor(s) / Mentor(s): Don W. Cleveland, PhD
Cancer Type: Blood, Sarcoma
Research Area: Chromatin Biology
Esteban A. Orellana Vinueza, PhD

Dr. Orellana Vinueza is investigating whether changes that modify the shape, stability and function of transfer RNAs (tRNAs) play a role in the development of cancer. The tRNA molecules are involved in the process that translates messenger RNA into a protein. Dr. Orellana Vinueza focuses on a tRNA methyltransferase complex that malfunctions in glioblastoma and liposarcoma. He will assess how alterations in the activity of this enzyme affect global patterns of methylation in normal and human cancer cells. Methylation is the process that controls the timing and amount of proteins that are produced in cells. Understanding how this process breaks down may help decipher the mechanisms that drive cancer and guide the development of new treatments.

Project title: "Role of METTL1-WDR4 tRNA methyltransferase complex in cancer"
Institution: Boston Children's Hospital
Award Program: Fellow
Sponsor(s) / Mentor(s): Richard I. Gregory, PhD
Cancer Type: Brain, Sarcoma
Research Area: RNA (RNA processing, miRNA and piRNA mechanisms, enzymatic RNAs, etc.)
Anand G. Patel, MD, PhD

Dr. Patel studies rhabdomyosarcoma (RMS), a fast-growing childhood cancer that can spread from muscles to other parts of the body. Dr. Patel has discovered that each RMS tumor consists of different subpopulations of cells that mimic different stages of early muscle development. He will characterize how chemotherapy or radiation therapy selects for specific subpopulations of resistant cancer cells that survive treatment within both patient tissue and in patient-derived models of cancer. Using this information, Dr. Patel aims to test whether directing therapy against resistant cell subpopulations improves treatment outcomes. Ultimately, the goal of this research is to uncover novel therapeutic targets and drugs for the treatment of pediatric RMS.

Project title: "Targeting the developmental architecture of rhabdomyosarcoma"
Institution: St. Jude Children's Research Hospital
Award Program: Sohn Fellow
Sponsor(s) / Mentor(s): Michael A. Dyer, PhD
Cancer Type: Pediatric, Sarcoma
Research Area: Chemoresistance
  • You can support our innovative researchers.