Damon Runyon News

March 3, 2023

Cancer cells are often assumed to be “hypermetabolic,” meaning their energy-producing cycles run on overdrive to fuel the uncontrolled division and growth that defines a tumor. But new findings from former Damon Runyon Fellow Caroline R. Bartman, PhD, and her colleagues at Princeton University challenge this assumption, revealing how much we still have to learn about cancer metabolism.

February 22, 2023

The process of transcription, in which DNA is copied into RNA, is carried out by a complex cellular machinery that controls which genes are expressed as proteins. Researchers have observed certain organizational features of this machinery, such as the clumping of certain proteins into “condensates,” which function as a unit though unbound by a membrane.

February 22, 2023

Messenger RNA conveys instructions for how to build a protein in the form of codons—sequences of three nucleotides (A, C, G, or U) that correspond to a specific amino acid. The codons CGU, CGC, and CGA, for example, all correspond to the amino acid arginine. During the process of translation, ribosomes move along the messenger RNA, “reading” out the codons and building a chain of amino acids as translational RNAs (tRNAs) deliver them one by one.

February 15, 2023

Chimeric antigen receptor (CAR) T cell therapy, in which a patient’s own immune T cells are genetically engineered to target their cancer cells, is one of the most promising advances in cancer therapy of the past decade. Having demonstrated the effectiveness of CAR T cells against a range of blood cancers, researchers now seek to design CAR T cells that can remain active in the body for longer and more efficiently eliminate tumors, with the goal of reducing costs and bringing CAR T therapy to more patients.

February 9, 2023

Cell adhesion molecules (CAMs) are proteins found on the cell surface that facilitate interactions between cells. They are responsible for organizing and binding cells within tissue structures, creating circuits between neurons, and chaperoning immune cells to their destinations. Known as “cellular glue” and essential for organ function, CAMs are found throughout the body.

January 26, 2023

The Damon Runyon Cancer Research Foundation has announced its newest class of Damon Runyon Fellows, 14 exceptional postdoctoral scientists conducting basic and translational cancer research in the laboratories of leading senior investigators. The prestigious, four-year Fellowship encourages the nation’s most promising young scientists to pursue careers in cancer research by providing them with independent funding ($260,000 total) to investigate cancer causes, mechanisms, therapies, and prevention. 

January 18, 2023

The Damon Runyon Cancer Research Foundation has announced eight recipients of the 2023 Damon Runyon-Rachleff Innovation Award, established to support “high-risk, high-reward” ideas with the potential to significantly impact the prevention, diagnosis, or treatment of cancer. Five extraordinary early-career researchers will receive initial grants of $400,000 over two years, and each will have the opportunity to receive two additional years of funding (for a potential total of $800,000).

January 13, 2023

Small-cell lung cancer (SCLC), which accounts for about 15% of lung cancer diagnoses, is a relatively rare but aggressive disease. Most SCLC patients respond to chemotherapy at first, but nearly all experience disease recurrence, and at that point treatment options become scarce. Because SCLC is driven by mutations that knock out “tumor suppressor” genes, rather than activate cancer driver genes, it has been difficult to treat with targeted therapies.

December 19, 2022

Myeloproliferative neoplasms (MPNs) are cancers that arise when a mutated blood stem cell begins to produce too many mature blood cells. A number of mutations can drive MPNs, and studies have demonstrated that different mutations result in different clinical outcomes.


December 12, 2022

Thanks to research by Damon Runyon scientists Melody Smith, MD, Elizabeth Hughes, PhD, and many others, the impact of gut bacteria on cancer immunotherapy response is becoming clearer. The presence of certain bacteria, such as Akkermansia muciniphila, in patient stool samples has been shown to correlate with better response to immunotherapies, suggesting that these microbes play a pivotal role in stimulating immune response.