Damon Runyon News

June 7, 2022
Awards and Honors

Founded in 1780, the American Academy of Arts and Sciences is both an honorary society that recognizes and celebrates the excellence of its members and an independent research center that convenes leaders from across disciplines to address significant challenges facing the world. This year, four Damon Runyon scientists were among the 261 exceptional individuals elected to the Academy.

June 6, 2022

Damon Runyon scientists and industry partners gathered in person and virtually on Thursday, May 19 for the 2022 Accelerating Cancer Cures Symposium, hosted by Merck in South San Francisco.

May 24, 2022
Awards and Honors

The National Academy of Sciences (NAS), established in 1863, is the body of distinguished researchers “charged with providing independent, objective advice to the nation on matters related to science and technology.” Election to membership is among the highest honors a scientist can receive. This year, eight Damon Runyon alumni join the NAS ranks, bringing the total number of Damon Runyon alumni in NAS to 97.

May 16, 2022
New Discovery

Patients with ovarian cancer have a 92% five-year survival rate if they are diagnosed at stage I. But a lack of effective screening methods and absence of symptoms in its early stages makes ovarian cancer particularly difficult to catch before it spreads. Patients and clinicians need a kind of internal alarm system, a device that can detect and communicate the presence of cancer cells in the body before they have a chance to inflict damage.

May 10, 2022
New Discovery

Messenger RNA (mRNA) vaccines have been shown to elicit immunity against a number of infectious diseases—including, notably, COVID-19—as well as several types of cancer. Unlike traditional vaccines, which introduce a small amount of the pathogen into the body, mRNA vaccines provide the body with instructions for how to make a specific protein found on the surface of a virus or cancer cell. Once the vaccine is delivered, molecular machines called ribosomes bind to the mRNA, “read” its instructions, and build the protein. This, in turn, prompts the immune system to produce the corresponding antibodies, so that it is ready when it encounters the real virus or cancer cell. Importantly, the mRNA molecules that contain these protein-making instructions are broken down by the cell after they have delivered their “message.”

May 1, 2022

It is with sadness that we announce the passing of Damon Runyon alumnus, Emeritus Board Member, and Nobel Laureate Sidney Altman, PhD. He was 82.

April 25, 2022
New Discovery

The rise of single-cell RNA sequencing in recent years has transformed the study of gene expression, providing researchers with a detailed picture of how and when genes get turned “on” and “off” in individual cells within a given tissue. Analyzing cells’ RNA sequences, or transcriptomes, can reveal cell-to-cell variability, or in the case of cancer, mutations carried by small populations of tumor cells. Current single-cell sequencing methods, however, fail to capture the location of the cell within the tissue. Spatial transcriptomics techniques, on the other hand, define the spatial distribution of RNA molecules within a tissue sample, but lack single-cell resolution. To put this on a human scale, consider the different information you get about a neighborhood from a phone book versus a satellite image.

April 18, 2022
Latest News

Damon Runyon has announced its newest cohort of Quantitative Biology Fellows, three exceptional early-career scientists who are applying the tools of computational science to generate and interpret cancer research data at extraordinary scale and resolution. Whether measuring cell-to-cell genetic variability within a tumor or developing algorithms that can predict if therapy will be effective, their projects extend the boundaries of what is possible in cancer research, allowing them to tackle fundamental biological and clinical questions.

April 13, 2022
New Discovery

For many patients with colon cancer, the advent of immune checkpoint inhibitors has substantially improved their treatment options. Immune checkpoint inhibitors (ICIs) work by removing the “brakes” from immune T cells, unleashing them on cancer cells. Unfortunately, however, ICIs do not work for everyone, and they can have life-threatening side effects for some patients. Given these factors, ICIs should only be used in patients who have the potential to benefit from them—the problem is, clinicians are often unable to predict who those patients will be.

April 8, 2022
New Discovery

CAR (chimeric antigen receptor) T cell therapy, in which a patient’s own immune cells are genetically engineered to target and kill cancer cells, has revolutionized the treatment of certain blood cancers. However, up to 60% of patients receiving CAR T therapy still experience relapse and up to 80% of patients experience serious side effects, including neuroinflammation—both of which present an obstacle to CAR T therapy’s widespread adoption.