Lung Cancer

Current Projects
Angela N. Brooks, PhD

Dr. Brooks is analyzing cancer genome sequence data to identify DNA mutations that affect RNA splicing, a form of gene processing and regulation. By characterizing these mutations, her work will provide further understanding of the role of splicing alterations in cancer as well as insight into the functional consequences of cancer mutations.


Project title: "Characterizing somatic mutations that affect mRNA splicing in cancer"
Institution: University of California, Santa Cruz
Award Program: Dale Frey Scientist
Cancer Type: Blood, Lung, All Cancers
Research Area: Genomics
Sidi Chen, PhD

Dr. Chen aims to understand the relationship between small RNAs and cancer.  Small RNAs are important regulators of genetic networks inside the cell; perturbation of these networks can lead to malignant cell growth.  His goal is to develop anti-cancer drugs and therapies by targeting the process of small RNA production.

Project title: "Investigation of Dicer as a novel therapeutic route towards the inhibition of tumorigenesis and neoplastic growth"
Institution: Yale University
Award Program: Dale Frey Scientist
Cancer Type: Lung, Sarcoma
Research Area: Cancer Genetics
Sigrid Nachtergaele, PhD

Dr. Nachtergaele is investigating the roles of RNA methylation, a process that chemically tags mRNA to alter gene expression and protein production. She has discovered a novel enzyme (m1A) that modifies RNA in this way and aims to uncover how malfunctions in this process can lead to cancer. Her investigations will expand the understanding of how mRNA modifications are regulated and result in altered cell signaling and growth in normal and cancer cells.  Building on this knowledge, her goal is to identify novel therapeutic targets for cancer.

Project title: "The dynamic N1-methyladenosine methylome in eukaryotic mRNA"
Institution: The University of Chicago
Award Program: Dale Frey Scientist
Cancer Type: Blood, Breast, Lung
Research Area: Chemical Biology
Trudy G. Oliver, PhD

Many cancers initially respond to therapy. However, cancers often acquire resistance and stop responding to further treatment. Small cell lung cancer (SCLC) is an example of a cancer that is highly sensitive to initial treatment, but quickly acquires a vicious resistance resulting in a five-year patient survival rate of less than 4%. In order to combat drug resistance and improve the quality of life for patients with SCLC, it is important to understand the key genetic changes and cellular pathways that drive resistance.

Dr. Oliver will use the most innovative next-generation sequencing technologies to comprehensively identify critical genetic changes associated with resistance. These findings will be essential for understanding how lung cancer, and potentially other types of cancer, evades chemotherapy. In addition, this work will identify novel pathways that could be targeted to re-establish drug sensitivity and thereby provide new treatment options for patients with drug-resistant disease.  


Project title: "Mechanisms of drug resistance in small cell lung cancer"
Institution: University of Utah
Award Program: Innovator
Cancer Type: Lung
Research Area: Chemoresistance
  • You can support our innovative researchers.