Lung Cancer

Current Projects
Fyza Y. Shaikh, MD, PhD

Immunotherapy has significantly changed how lung cancer and melanoma are treated. Unfortunately, only a small percentage of patients experience long-lasting responses. Gut bacteria have emerged as a potential predictor of how patients will respond to immunotherapy and may even be adjusted to enhance the effect of immunotherapy. Dr. Shaikh aims to identify features of the gut microbiome that correlate with immunotherapy responses. She will focus on both individual bacteria as they change over the course of treatment and the metabolites made by the entire bacterial community in the colon. The goal of this project, since gut bacteria can be modified, is to develop microbiome-based treatments to be used in combination with immunotherapy to improve response rates or overcome immunotherapy resistance for patients.

Project title: "Defining microbiome stability and longitudinal shifts as biomarkers of tumor response to immune checkpoint inhibitors across multiple malignancies"
Institution: The Johns Hopkins University School of Medicine
Award Program: Clinical Investigator
Sponsor(s) / Mentor(s): Cynthia L. Sears, MD, and Drew M. Pardoll, MD, PhD
Cancer Type: Lung, Skin
Research Area: Immunotherapy
David M. Walter, PhD

Dr. Walter focuses on splicing factor genes, which carry out the RNA splicing process and are widely mutated in lung cancer. The splicing factor U2AF1 is mutated in 2% of lung cancer patients, but 80% of these mutations are identical, making it one of the most common missense mutations in lung cancer. Scientists do not have a good understanding of why this mutation occurs, or how it promotes cancer development. Dr. Walter will use a combination of cell and mouse model systems along with patient data to identify the unique molecular and genetic features of U2AF1-mutant cancer cells with the goal of identifying new therapeutic targets for lung cancer patients.

Project title: "Identifying the selective mechanism behind U2AF1 mutations in lung adenocarcinoma"
Institution: Dana-Farber Cancer Institute
Award Program: Fellow
Sponsor(s) / Mentor(s): Matthew L. Meyerson, MD, PhD
Cancer Type: Lung
Research Area: Cancer Genetics
Dian Yang, PhD

Dr. Yang is examining tumor heterogeneity in search of new diagnostic markers and potential therapeutic targets. A tumor consists of not only cancer cells, but also immune cells, fibroblasts, and other stromal components. The diverse cell types and cell states that form the tumor microenvironment (TME) may promote disease progression and lead to therapeutic resistance. Dr. Yang aims to uncover fundamental principles of tumor evolution by generating a comprehensive and quantitative “traffic map” of cancer cell state transitions and fitness changes during tumor development. Understanding this fundamental question has the potential to reveal key biomarkers that predict treatment response and actionable targets that drive resistance, thereby opening up new possibilities for long-lasting, multilayered tumor control.

Project title: “Molecular recording of tumor evolution in response to macrophage modulations”
Institution: Columbia University
Award Program: Dale Frey Scientist
Cancer Type: Lung
Research Area: Cancer Genetics
Qinheng Zheng, PhD

Dr. Zheng [Connie and Bob Lurie Fellow] is developing small molecules that selectively inhibit the protein K-Ras(G12D). Pancreatic ductal adenocarcinoma (PDAC) is the most lethal common cancer due to the infrequency of early diagnosis and the lack of targeted or immune therapies. A high percentage (>90%) of PDAC patients harbor KRAS mutations, with the majority expressing the K-Ras(G12D) missense mutation. Despite extensive drug discovery efforts across academia and industry, there are no approved drugs directly targeting oncogenic K-Ras(G12D). K-Ras lacks an apparent surface topology for reversible small molecule binding, leading to its notorious characterization as “undruggable.” Dr. Zheng is searching for small molecules that form a permanent bond with the mutant protein at its missense site and inhibit its interaction with effector proteins.

Project title: "Drugging K-Ras(G12D) with targeted covalent inhibitors"
Institution: University of California, San Francisco
Named Award: Connie and Bob Lurie Fellow
Award Program: Fellow
Sponsor(s) / Mentor(s): Kevan M. Shokat, PhD
Cancer Type: Colorectal, Lung, Pancreatic
Research Area: Chemical Biology
Pu Zheng, PhD

Dr. Zheng [Fayez Sarofim Fellow] is dedicated to the development of technologies for studying tumor evolution within their native contexts. Understanding the complex processes of cancer growth and progression requires a deep exploration of the dynamic interactions between tumor cells and the tumor microenvironment. “Spatial-omics” technologies are powerful tools that offer direct visualization of cells and their interactions in natural contexts, enabling systematic investigation of these intricate processes. Dr. Zheng aims to develop novel spatial-omics technologies that combine imaging and gene sequencing approaches to uncover the mechanisms underlying the spatially distinguished features of tumor evolution. Dr. Zheng received his PhD from Harvard University, Cambridge and his BS from Peking University, Beijing.

Project title: "An integrated imaging- and sequencing-based spatial-omic method to study tumor evolution"
Institution: Whitehead Institute for Biomedical Research
Named Award: Fayez Sarofim Fellow
Award Program: Fellow
Sponsor(s) / Mentor(s): Jonathan S. Weissman, PhD
Cancer Type: Lung
Research Area: Imaging
Qinheng Zheng, PhD

There are two key types of cancerous mutations: one that turns on growth signals too strongly, like a car with a stuck accelerator, and the other that turns off safety mechanisms, like a car with broken brakes. While some cancers can be treated with drugs that block overactive growth signals—such as Gleevec for chronic myeloid leukemia—there are currently no effective treatments for cancers caused by the loss of these safety mechanisms, also known as tumor suppressor genes. Notably, mutations in TP53, one of the most common tumor suppressor genes, are abundant in almost all cancers, including breast, lung, and ovarian cancers. Dr. Zheng’s research focuses on reactivating these impaired tumor suppressor genes, such as TP53 and FBXW7, to develop new treatment options for a wider range of cancers and to address resistance to existing therapies.

Project title: “Gain-of-function rescue of somatic mutations in cancer”
Institution: Harvard Medical School
Award Program: Dale Frey Scientist
Cancer Type: Colorectal, Lung, Pancreatic
Research Area: Chemical Biology
  • You can support our innovative researchers.