Chao Lu, PhD

Eukaryotic cells develop sophisticated mechanisms to package and access our genetic information. Recent studies have shown that proteins involved in genome regulation are frequently altered in human cancers. These findings agree with laboratory observations that cancer cells often display abnormal nuclear architecture, and raise the questions of whether, and how, aberrant chromatin organization facilitates tumor development. Collectively, Dr.

Arnold S. Han, MD, PhD

Cancer immunotherapy utilizes the body’s own sophisticated defenses to kill cancer cells. Recently, strategies that mobilize the immune system to target cancer have shown great promise in the clinic. Despite its enormous promise, however, immunotherapy is only effective in a relatively limited subset of cancers in a limited group of patients. The continued success and advance of cancer immunotherapy will require novel and innovative approaches. T cells are the cells within the immune system that mediate most anti-tumor immune responses. Dr.

J. Brooks Crickard, PhD

Dr. Crickard [The Mark Foundation for Cancer Research Fellow] is using high-throughput single molecule imaging to rebuild and visualize the process of homologous recombination (HR) in real time. DNA is subjected to many insults leading to damage. This DNA damage leads to a loss in genomic integrity, resulting in the formation and metastasis of many types of cancer. To guard against DNA damage, cells have developed several complex regulatory networks devoted to repair of damaged DNA, including HR.