Jay F. Sarthy, MD, PhD

Dr. Sarthy is developing new easy-to-use and affordable methods for studying DNA packaging and epigenetics (modification of gene expression) in pediatric cancers with a special focus on diffuse midline gliomas and neuroblastoma. These methods may help explain the drivers of pediatric malignancies and allow clinicians to better monitor response to treatment with the goal of developing new drugs that restore the cell’s ability to package DNA correctly.

Matthew P. Miller, PhD

Dr. Miller is investigating how cells ensure the correct partitioning of genetic material during cell division. Errors in this process occur in nearly all tumor cells and are the leading cause of miscarriages and congenital birth defects in humans. The vast majority of solid tumors have incorrectly positioned chromosomes, causing high levels of genomic instability and DNA damage. Very little is known about how chromosome segregation becomes so defective during tumorigenesis.

Jeremy I. Roop, PhD

Dr. Roop seeks to advance HIV vaccine design efforts by studying the unique antibody response of infants infected with HIV. The 36 million people worldwide who are infected with HIV are at an increased risk for many forms of cancer. Infants who acquire HIV from their mothers rapidly develop broadly active antibodies that are capable of neutralizing a wide diversity of global HIV strains. An understanding of the developmental processes involved in eliciting this broad and potent response may reveal clues vital to vaccine design efforts.

Ying Qi Shirleen Soh, PhD

Dr. Soh focuses on how viruses such as influenza evolve to infect diverse host species. Zoonotic transmissions of influenza from avian and swine hosts to humans have the potential to result in pandemics with severe public health consequences. Cancer patients, in particular, are disproportionately susceptible to complications arising from infection. Dissecting the pathways and mechanisms by which influenza can adapt to the human host will aid in the ability to predict and prevent pandemics resulting from zoonotic infection.