Chuan Li, PhD

Dr. Li is focusing on quantifying how different tumor suppressor genes interact to determine the mechanisms underlying cancer growth. Using mouse lung adenocarcinoma as a model system, she is developing high-throughput experimental approaches to quantify the combinatorial effects of inactivating tumor suppressor pairs. This approach may enable an in-depth understanding of the pathways that underlie cancer progression and potentially hint at new therapeutic targets.

Kelsie A. Eichel, PhD

Dr. Eichel is studying how proteins travel across cellular membranes and are sorted to different areas of the cell. This highly regulated mechanism generates distinct membrane domains of the cell with unique protein compositions, which are essential for cellular functions. Dr. Eichel hopes to understand how membrane trafficking plays a role in cancer biology, including loss of cellular polarization, uncontrolled cell growth, invasion, and metastasis.

Jing Lin Xie, PhD

Dr. Xie focuses on uncovering mutation-independent mechanisms of drug resistance in cancer. The prevalence of drug resistance in tumors – and collateral damage to healthy tissues – have been major roadblocks to improving the efficacy of chemotherapy. While current research has been focused on identifying mutations that confer cancer drug resistance, an emerging paradigm is that mutation-independent changes in the chromatin or proteins could be a hidden force that promotes the development of drug resistance.

John C. Janetzko, PhD

Dr. Janetzko studies G protein-coupled receptors (GPCRs), a class of membrane-embedded proteins that relay signals about hormone and neurotransmitter binding to the inside of the cell. Several types of cancer cells hijack these proteins by keeping them in an active state (constitutively turned “on”) in order to promote their growth and allow them to metastasize. The activated GPCR often becomes a target for another set of proteins, called GRKs (GPCR kinases).

Fangfei Qu, PhD

Dr. Qu is using Small Cell Lung Cancer (SCLC), a highly metastatic and lethal subtype of lung cancer, as a model to gain a better understanding of brain metastasis. Brain metastases are the most common type of intracranial tumors; they cause morbidity and mortality in a large number of cancer patients worldwide. The lack of preclinical models for brain metastasis has hampered our ability to better understand how primary tumors spread to the brain and grow there.

Kathryn R. Taylor, PhD

Dr. Taylor is investigating the impact of neural activity on pediatric high-grade glioma (pHGG) invasion. The innate ability of pHGGs to diffusely infiltrate healthy brain tissue is a classical hallmark of the disease, which represents a major contributor to the devastating prognosis. Using optogenetic techniques to stimulate neuronal activity, she will directly and noninvasively test the effect of activity-dependent secreted proteins on tumor cell invasion in human cancer cells and animal models.

Victoria Hung, PhD

Dr. Hung focuses on a central question in cell biology: how gene expression is spatially and temporally regulated to give rise to cell types and functions. Historically, the ribosome has been viewed as a molecular machine of invariant composition that passively and constitutively translates mRNA to protein. She is studying how phosphorylation of ribosomal components may endow ribosomes with specificity for certain transcripts and unique cellular functions.

Shaogeng (Steven) Tang, PhD

Dr. Tang is interested in discovering small-molecule inhibitor drugs that target human immune-checkpoint proteins, including programmed cell death protein 1 (PD-1), using a combination of biochemistry, protein engineering, structural biology and immunology approaches. These small-molecule inhibitors would offer safety advantages resulting from their much shorter half-lives as compared to FDA-approved monoclonal antibody therapies, and possibly also offer efficacy advantages resulting from increased penetration and distribution within the tumor microenvironment.

Jennifer L. Caswell-Jin, MD

The development of HER2-targeted therapies over the past two decades has had tremendous positive impact on the lives of HER2-positive breast cancer patients. However, tumor resistance to these therapies remains a significant challenge: a sizable portion of patients with early-stage HER2-positive breast cancer develop recurrence, and the vast majority of patients with metastatic HER2-positive breast cancer eventually progress through treatment.

Jianjin Shi, PhD

Dr. Shi [Layton Family Fellow] is exploring how cells die in the nervous system in both healthy and disease states. He will focus on a novel and ill-defined form of cell death in the nerve cells and nerve fibers upon injury or stress. Resisting cell death is a hallmark of all cancers. Furthermore, many cancer chemotherapeutic drugs cause the death of nerve cells and nerve fibers, therefore inducing neurological diseases in cancer patients.